Characterization of mutations in the b subunit of F1F0 ATP synthase in Escherichia coli.

نویسندگان

  • K A McCormick
  • G Deckers-Hebestreit
  • K Altendorf
  • B D Cain
چکیده

Site-directed mutagenesis was used to investigate the restrictions on Ala-79 of the b subunit in F1F0 adenosine triphosphate synthase. This amino acid had been previously identified as particularly sensitive to mutation (McCormick, K. A., and Cain, B. D. (1991) J. Bacteriol. 173, 7240-7248). Mutant uncF (b) genes were placed under control of the lac promoter and monitored for F1F0 ATP synthase function in an uncF(b) deletion strain. Three deleterious bAla-79 mutations were moved to the unc operon in the chromosome by homologous recombination. Decreases in enzymatic activity in the uncF (b) mutant strains resulted from reduced amounts of enzyme. With the exception of the bAla-79-->Pro mutation, high expression of mutant uncF (b) genes resulted in increases in F1F0 ATP synthase activity which were sufficient to overcome the defects. In addition to the decrease in the amount of enzyme, the bAla-79-->Lys mutation affected ATP synthesis to a much greater extent than ATP-driven proton translocation. The evidence supports our earlier hypothesis, in which bAla-79 was proposed to play an important, but not essential, structural role in F1F0 ATP synthase assembly or stability.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

F1F0 ATP synthase subunit c is a substrate of the novel YidC pathway for membrane protein biogenesis

The Escherichia coli YidC protein belongs to the Oxa1 family of membrane proteins that have been suggested to facilitate the insertion and assembly of membrane proteins either in cooperation with the Sec translocase or as a separate entity. Recently, we have shown that depletion of YidC causes a specific defect in the functional assembly of F1F0 ATP synthase and cytochrome o oxidase. We now dem...

متن کامل

The involvement of mutation in the serine 83 of quinolone resistant determining regions of the GyrA Gene in resistance to ciprofloxacin in Escherichia coli .

Appearance of bacteria resistant to antibacterial agents puts physicians in trouble and threatens the health of the world. The rapid development of bacterial resistance in Escherichia coli to ciprofloxacin makes difficult the treatment of infectious diseases. So, detection of the locations of possible mutations in gyrase A gene ( gyrA ) in these mutants is very important to determine the mech...

متن کامل

Purification and reconstitution into proteoliposomes of the F1F0 ATP synthase from the obligately anaerobic gram-positive bacterium Clostridium thermoautotrophicum.

The proton-translocating F1F0 ATP synthase from Clostridium thermoautotrophicum was solubilized from cholate-washed membranes with Zwittergent 3-14 at 58 degrees C and purified in the presence of octylglucoside by sucrose gradient centrifugation and ion-exchange chromatography on a DEAE-5PW column. The purified enzyme hydrolyzed ATP at a rate of 12.6 micromol min(-1) mg(-1) at 58 degrees C and ...

متن کامل

Labeling of subunit b of the ATP synthase from Escherichia coli with a photoreactive phospholipid analogue.

Purified ATP synthase (F1F0) from Escherichia coli K12 was labeled with the hydrophobic photoreactive label 1-palmitoyl 2-(2-azido-4-nitro)benzoyl sn-glycero-3-[3H]phosphocholine in reconstituted proteoliposomes. The F0-subunit b was predominantly labeled. A very low amount of label was detected on the other F0-subunits a and c. The label in subunit b could be traced back by proteolytic digesti...

متن کامل

The Escherichia coli F1F0 ATP synthase displays biphasic synthesis kinetics.

The F1F0 proton-translocating ATPase/synthase is the primary generator of ATP in most organisms growing aerobically. Kinetic assays of ATP synthesis have been conducted using enzymes from mitochondria and chloroplasts. However, limited data on ATP synthesis by the model Escherichia coli enzyme are available, mostly because of the lack of an efficient and reproducible assay. We have developed an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 268 33  شماره 

صفحات  -

تاریخ انتشار 1993